The Augmentation-Speed Tradeoff for Consistent Network Updates

Arash Pourdamghani, TU Berlin Joint work with Monika Henzinger, Ami Paz, Stefan Schmid

SOSR 2022

> Networks are prone to be more dynamic

- > Networks are prone to be more dynamic
- > SDN simplifies and allows for fast updates

- > Networks are prone to be more dynamic
- > SDN simplifies and allows for fast updates
- > However, SDN introduces new challenges,...

SDN

A challenge in SDN updates: non-consistent update times!

A challenge in SDN updates: non-consistent update times!

Initial configuration

First side effect: transient loops

- > Networks are prone to be more dynamic
- > SDN simplifies and allows for fast updates
- > However, SDN introduces new challenges,...

SDN

Second side effect: congestion

Initial configuration

Second side effect: congestion

Initial configuration

Second side effect: congestion

Initial configuration

Possible Middle configuration

Problem definition

> Input: given a network with:

- > multiple unsplittable flows with different demands from different sources and terminals
- > different capacity on each link
- > unknown update delays on each switch

Problem definition

> Input: given a network with:

> multiple unsplittable flows with different demands from different sources and terminals

- > different capacity on each link
- > unknown update delays on each switch

> Goal:

- routing packets in a minimum number of "rounds",
- \succ no packets stuck in a loop, nowhere in the network,
- > not going over the capacity of links

Our proposed Solution: Augmentation

How to realize augmentation?

> Augmentations are needed temporarily.

How to realize augmentation?

- > Augmentations are needed temporarily.
- > Networks are equipped with buffer to handle bursts.

How to realize augmentation?

- > Augmentations are needed temporarily.
- > Networks are equipped with buffer to handle bursts.
- Congestion control in virtual networks

Selected previous works

Our contribution: introducing a new dimension

Our contribution: introducing new optimal & feasible schedules

Our contribution: theoretical proofs

NP-Hardness of finding an optimal

A 3SAT Problem

$$C_i = \left(x_j \vee \neg x_{j'} \vee x_{j''} \right)$$

$$C = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

NP-Hardness of finding an optimal

An optimal solution based on MIP

Minimize R (or α , β)	
for all $i \in [P]$	
$\sum_{r \in [R]} x_{v,i}^r = 1$	$\forall v \in V(F_i^o \cup F_i^u) \setminus \{t_i\}$
$y_{(v,w),i}^0 = 1$	$\forall (v, w) \in F_i^o$
$y_{(\mu,w),i}^{0} = 0$	$\forall (v, w) \notin F_i^o$
for all $r \in [R]$	
$R \geq r \cdot x_{n,i}^r$	$\forall v \in V(F_i^o \cup F_i^u) \setminus \{t_i\}$
$y_{(v,w),i}^r = 1$	$\forall (v, w) \in F_i^o \cap F_i^u$
$y_{(v,w),i}^r = \sum_{r' \le r} x_{v,i}^{r'}$	$\forall (v, w) \in F_i^u \setminus F_i^o$
$y_{(n,w),i}^{r} = 1 - \sum_{r' \le r} x_{v,i}^{r'}$	$\forall (v, w) \in F_i^o \setminus F_i^u$
for all $\forall (v, w) \in F_i^o \cup F_i^u$	
$\gamma_{(n,w)}^r \ge y_{(n,w)}^{r-1}$	
$\gamma_{(v,w),i}^{r} \ge y_{(v,w),i}^{r}$	
$v_{w,i}^{r} - o_{v,i}^{r} - 1$	
$\gamma_{(v,w),i} \leq \frac{ V -1}{ V -1} + 1$	
for all $\forall v \in P_i$	
$\Lambda_{v,i}^r = x_{v,i}^r$	$\exists (v,w) \in F_i^o \land (v,w') \in F_i^u$
$\Lambda_{v,i}^r = 0$	$\nexists(v,w)\in F_i^o\wedge(v,w')\in F_i^u$
$\Upsilon^r_{v,i} \le f^r_{(w,v),i}, f^r_{(w',v),i}$	$\exists (w,v) \in F_i^o \land (w',v) \in F_i^u$
$\Upsilon_{v,i}^r = 0$	$\nexists(w,v) \in F_i^o \land (w',v) \in F_i^u$
$f_{(v,w),i}^r \leq \gamma_{(v,w),i}^r$	$\forall (v, w) \in F_i^o \cup F_i^u$
$\sum_{(s_i,v)} f_{(s_i,v),i}^r = 1 + \Lambda_{s_i,i}^r$	$s_i \in P_i$
$\sum_{(v,t_i)} f_{(v,t_i)i}^r = 1 + \Upsilon_{t_i,i}^r$	$t_i \in P_i$
$\sum_{(v,w)} f_{(v,w),i}^{r} - \sum_{(w',v)} f_{(v,w),i}^{r}$	$(w',v)_{,i} = \Lambda_{v,i}^r - \Upsilon_{v,i}^r$
$\forall v \in v \in V(F_i^o \cup F_i^u) \setminus \{s_i, t\}$	t _i }
$(v, w), (w', v) \in F_i^o \cup F_i^u$	
$\sum_{i \in [U]} f^r_{(v,w),i} \cdot d_i \le \alpha \cdot c_{(v,v)}$	$(w) + \beta \qquad \forall (v, w) \in E$

An optimal solution based on MIP: breakdown

Minimize <i>R</i> (or α , β)	
for all $i \in [P]$	
$\sum_{r \in [R]} x_{v,i}^r = 1$	$\forall v \in V(F_i^o \cup F_i^u) \setminus \{t_i\}$
$y_{(n,n)}^{0} = 1$	$\forall (v, w) \in F_i^o$
$u^{0}_{0} = 0$	$\forall (v, w) \notin F^{o}$
f(v,w),i for all $r \in [R]$	
$R > r \cdot x^r$	$\forall v \in V(F_i^o \cup F_i^u) \setminus \{t_i\}$
$u^r = 1$	$\forall (v, w) \in F_i^o \cap F_i^u$
$\frac{g(v,w),i}{r}$	$V(0, u) = \Gamma_1^{(1)} \vee \Gamma_1^{(2)}$
$y'_{(v,w),i} = \sum_{r' \le r} x'_{v,i}$	$\forall (v, w) \in F_i^{\omega} \setminus F_i^{\omega}$
$y_{(v,w),i}^r = 1 - \sum_{r' \le r} x_{v,i}^{r'}$	$\forall (v, w) \in F_i^o \setminus F_i^u$
for all $\forall (v, w) \in F_i^o \cup F_i^u$	
loon-fr	eedom
$o_{r}^{r} = o_{r}^{r} = 1$	codom
$\Lambda_{v,i}^{r} \bar{\mathbf{S}}_{nlit-avc}$	$\mathbb{A}(v,w) \in F_i^o \land (v,w') \in F_i^u$
$\Upsilon_{v,i}^r = \int_{(w,v),i}^{r} J_{(w',v),i}^r dv dv$	$\mathbf{J}_{\mathbf{u}}(\mathbf{u},\mathbf{u}) \in \mathbf{F}_{i}^{u}$
$\sum_{(v,v)} f_{(v,w),i}^{(v,t_i),i} = \sum_{(w',v)} f_{(v,w),i}^{(v,t_i),i}$	$M_{v,v,i} = \Lambda_{v,i}^r - \Upsilon_{v,i}^r$
$\sum_{(a,w)} f'_{(a,w),i} - \sum_{(w,a)} f'_{(a,w)$	$\mathbf{A}_{v,v),i}^{r} = \mathbf{A}_{v,i}^{r} - \mathbf{Y}_{v,i}^{r}$
$\sum_{\substack{(v,w) \\ (v,w), i}} f_{(v,w),i}^{(v,t),i} - \sum_{\substack{(w,v) \\ (w,v)}} f_{(v,w),i}^{(v,w),i} - \sum_{\substack{(w,v) \\ (v,v), (w',v) \\ \in P_i^{(v)} \cup P_i^{(v,v)}}} f_{(v,v),i}^{(v,v),i}$	$\mathbf{A}_{v,v}^{r} = \mathbf{A}_{v,i}^{r} - \mathbf{Y}_{v,i}^{r}$ $\mathbf{A} + \mathbf{freedom}$ $\mathbf{A}_{v,v} + \beta \qquad \forall (v, w) \in E$

An optimal solution based on MIP: key insights

Miller-Tucker-Zemlin formulation

$$\begin{split} \gamma_{(v,w),i}^{r} &\geq y_{(v,w),i}^{r-1} \\ \gamma_{(v,w),i}^{r} &\geq y_{(v,w),i}^{r} \\ \gamma_{(v,w),i}^{r} &\leq \frac{o_{w,i}^{r} - o_{v,i}^{r} - 1}{|V| - 1} + \end{split}$$

Enforces ordering among switches

for all $\forall (v, w) \in F_i^o \cup F_i^u$ $\gamma_{(v,w),i}^r \ge y_{(v,w),i}^{r-1}$ $\gamma_{(v,w),i}^r$ Loop-fre $\gamma_{(v,w),i}^r \le \frac{o_{w,i}^r - o_{v,i}^r - 1}{ V - 1} + 1$	eedom

An optimal solution based on MIP: key insights

Branch and merge points

$\Lambda_{v,i}^r = x_{v,i}^r$	$\exists (v,w) \in F_i^o \land (v,w') \in F_i^u$
$\Lambda_{v,i}^r = 0$	$\nexists(v,w) \in F_i^o \land (v,w') \in F_i^u$
$\Upsilon^{r}_{v,i} \leq f^r_{(w,v),i}, f^r_{(w',v),i}$	$\exists (w,v) \in F_i^o \land (w',v) \in F_i^u$
$\Upsilon^r_{v,i} = 0$	$\nexists(w,v) \in F_i^o \land (w',v) \in F_i^u$

Enforcing strict source-terminal paths

An optimal solution based on MIP: key insights

Congestion freedom

$\sum_{(s_i,v)} f_{(s_i,v),i}^r = 1 + \Lambda_{s_i,i}^r$	$s_i \in P_i$
$\sum_{(v,t_i)} f_{(v,t_i),i}^r = 1 + \Upsilon_{t_i,i}^r$	$t_i \in P_i$
$\sum_{(v,w)} f_{(v,w),i}^{r} - \sum_{(w',v)} f_{(w',v),i}^{r} = \Lambda_{v,i}^{r} - \Upsilon_{v}^{r}$, <i>i</i>
$\forall v \in v \in V(F_i^o \cup F_i^u) \setminus \{s_i, t_i\}$	
$(v, w), (w', v) \in F_i^o \cup F_i^u$	
$\sum_{i \in [U]} f^r_{(v,w),i} \cdot d_i \le \alpha \cdot c_{(v,w)} + \beta$	$\forall (v,w) \in E$

Limiting flows

Fast algorithms: Greedy

> Goal: optimizing the number of rounds

Fast algorithms: Greedy

- Goal: optimizing the number of rounds
- > Method: backward recursions from terminal

Fast algorithms: Greedy

- Goal: optimizing the number of rounds
- Method: backward recursions from terminal
- Proof of termination: by induction

Fast algorithms: Delay

Goal: optimizing congestion

Fast algorithms: Delay

- Goal: optimizing congestion
- > Method: searching for best delayed path

Fast algorithms: Delay

- Goal: optimizing congestion
- > Method: searching for best delayed path
- > Proof of termination: stops when no changes happen in augmentation

Empirical counter-part of the tradeoff

The Internet Topology Zoo

Code is available at <u>github.com/inet-tub/AugmentRoute</u>

MIP vs. Greedy vs. Delay

Summary

- Concept: introducing augmentation for consistent updates
- > Theory:
 - > any schedule is consistent with * 2 augmentation,
 - \succ finding a consistent schedule with $*2 \epsilon$ augmentation is NP-hard
- > Algorithms:
 - \succ a mixed integer program to find the optimal number of
 - rounds/augmentation
 - Fast algorithms minimizing the number of rounds/augmentation
- > Empirical evaluation: confirming our theories
- Future work: Supporting splittable flows or way-pointing

Thank you!

Bundesministerium für Bildung und Forschung

European Research Council Established by the European Commission