The Augmentation-Speed Tradeoff for Consistent Network Updates

Arash Pourdamghani, TU Berlin
Joint work with Monika Henzinger, Ami Paz, Stefan Schmid

SOSR 2022

Network updates via SDN

$>$ Networks are prone to be more dynamic

Network updates via SDN

$>$ Networks are prone to be more dynamic
$>$ SDN simplifies and allows for fast updates

Network updates via SDN

$>$ Networks are prone to be more dynamic
$>$ SDN simplifies and allows for fast updates
> However, SDN introduces new challenges,...

A challenge in SDN updates: non-consistent update times!

A challenge in SDN updates: non-consistent update times!

First side effect

Initial configuration

Final configuration

First side effect

Final configuration

First side effect: transient loops

Initial configuration

Final configuration

Network updates via SDN

$>$ Networks are prone to be more dynamic
$>$ SDN simplifies and allows for fast updates
> However, SDN introduces new challenges,...

Second side effect: congestion

Initial configuration

Final configuration

Second side effect: congestion

Second side effect: congestion

Problem definition

> Input: given a network with:
> multiple unsplittable flows with different demands from different sources and terminals
$>$ different capacity on each link
> unknown update delays on each switch

Problem definition

> Input: given a network with:
> multiple unsplittable flows with different demands from different sources and terminals
$>$ different capacity on each link
> unknown update delays on each switch
> Goal:
$>$ routing packets in a minimum number of "rounds",
$>$ no packets stuck in a loop, nowhere in the network,
$>$ not going over the capacity of links

Our proposed Solution: Augmentation

How to realize augmentation?

$>$ Augmentations are needed temporarily.

How to realize augmentation?

$>$ Augmentations are needed temporarily.
> Networks are equipped with buffer to handle bursts.

How to realize augmentation?

$>$ Augmentations are needed temporarily.
$>$ Networks are equipped with buffer to handle bursts.
> Congestion control in virtual netwnele

Selected previous works

Our contribution: introducing a new dimension

Our contribution: introducing new optimal \& feasible schedules

Our contribution: theoretical proofs

NP-Hardness of finding an optimal

A 3SAT Problem

$$
\begin{aligned}
C_{i} & =\left(x_{j} \vee \neg x_{j^{\prime}} \vee x_{j^{\prime \prime}}\right) \\
C & =C_{1} \wedge C_{2} \wedge \cdots C_{m}
\end{aligned}
$$

NP-Hardness of finding an optimal

A 3SAT Problem

An optimal solution based on MIP

Minimize $R($ or α, β)	
$\sum_{r \in[R]} x_{v, i}^{r}=1$	$\forall v \in V\left(F_{i}^{o} \cup F_{i}^{u}\right) \backslash\left\{t_{i}\right\}$
$y_{(v, w), i}^{0}=1$	$\forall(v, w) \in F_{i}^{o}$
$y_{(0, w), i}^{0}=0$	$\forall(v, w) \notin F_{i}^{o}$
for all $r \in[R]$	
$R \geq r \cdot x_{v, i}^{r}$	$\forall v \in V\left(F_{i}^{o} \cup F_{i}^{u}\right) \backslash\left\{t_{i}\right\}$
$y_{(v, w), i}^{r}=1$	$\forall(v, w) \in F_{i}^{o} \cap F_{i}^{u}$
$y_{(v, w), i}^{r}=\sum_{r^{\prime} \leq r} x_{v, i}^{r^{\prime}}$	$\forall(v, w) \in F_{i}^{u} \backslash F_{i}^{o}$
$y_{(v, w), i}^{r}=1-\sum_{r^{\prime} \leq r} x_{v, i}^{r^{\prime}}$	$\forall(v, w) \in F_{i}^{o} \backslash F_{i}^{u}$
for all $\forall(v, w) \in F_{i}^{o} \cup F_{i}^{u}$	
$\gamma_{(v, w), i}^{r} \geq y_{(v, w), i}^{r-1}$	
$\gamma_{(v, w), i}^{r} \geq y_{(v, w), i}^{r}$	
$r^{r} \leq \frac{o_{w, i}^{r}-o_{u, i}^{r}-1}{r}$	
$\gamma_{(0, w), i}^{r} \leq \frac{w_{\text {wi }}, \underline{i, i}}{\|V\|-1}+1$	
for all $\forall v \in P_{i}$	
$\Lambda_{v, i}^{r}=x_{v, i}^{r}$	$\exists(v, w) \in F_{i}^{o} \wedge\left(v, w^{\prime}\right) \in F_{i}^{u}$
$\Lambda_{v, i}^{r}=0$	$\nexists(v, w) \in F_{i}^{o} \wedge\left(v, w^{\prime}\right) \in F_{i}^{u}$
$\Upsilon_{v, i}^{r} \leq f_{(w, v), i}^{r} f_{\left(w^{\prime}, v\right), i}^{r}$	$\exists(w, v) \in F_{i}^{o} \wedge\left(w^{\prime}, v\right) \in F_{i}^{u}$
$\Upsilon_{v, i}^{r}=0$	$\nexists(w, v) \in F_{i}^{o} \wedge\left(w^{\prime}, v\right) \in F_{i}^{u}$
$f_{(v, w), i}^{r} \leq \gamma_{(v, w), i}^{r}$	$\forall(v, w) \in F_{i}^{o} \cup F_{i}^{u}$
$\sum_{\left(s_{i}, v\right)} f_{\left(s_{i}, v\right), i}^{r}=1+\Lambda_{s_{i}, i}^{r}$	$s_{i} \in P_{i}$
$\sum_{\left(v, t_{i}\right)} f_{\left(v, t_{i}\right), i}^{r}=1+\Upsilon_{t_{i}, i}^{r}$	$t_{i} \in P_{i}$
$\sum_{(v, w)} f_{(v, w), i}-\sum_{\left(w^{\prime}, v\right)} f_{\left(w^{\prime}, v\right), i}=\Lambda_{v, i}-\mathrm{I}_{v, i}$$\forall v \in v \in V\left(F^{o} \cup F_{i}^{u}\right) \backslash\left\{s_{i}, t_{i}\right\}$	
$(v, w),\left(w^{\prime}, v\right) \in F_{i}^{o} \cup F_{i}^{u}$	
$\sum_{i \in[\|U\|]} f_{(v, w), i}^{r} \cdot d_{i} \leq \alpha \cdot c_{(v, w}$	w $+\beta \quad \forall(v, w) \in E$

An optimal solution based on MIP: breakdown

An optimal solution based on MIP: key insights

Miller-Tucker-Zemlin formulation

$$
\begin{aligned}
\gamma_{(v, w), i}^{r} & \geq y_{(v, w), i}^{r-1} \\
\gamma_{(v, w), i}^{r} & \geq y_{(v, w), i}^{r} \\
\gamma_{(v, w), i}^{r} & \leq \frac{o_{w, i}^{r}-o_{v, i}^{r}-1}{|V|-1}+1
\end{aligned}
$$

Enforces ordering among switches

Loop-freedom

An optimal solution based on MIP: key insights

Branch and merge points

$$
\begin{array}{ll}
\Lambda_{v, i}^{r}=x_{v, i}^{r} & \exists(v, w) \in F_{i}^{o} \wedge\left(v, w^{\prime}\right) \in F_{i}^{u} \\
\Lambda_{v, i}^{r}=0 & \nexists(v, w) \in F_{i}^{o} \wedge\left(v, w^{\prime}\right) \in F_{i}^{u} \\
\Upsilon_{v, i}^{r} \leq f_{(w, v), i}^{r}, f_{\left(w^{\prime}, v\right), i}^{r} & \exists(w, v) \in F_{i}^{o} \wedge\left(w^{\prime}, v\right) \in F_{i}^{u} \\
\Upsilon_{v, i}^{r}=0 & \nexists(w, v) \in F_{i}^{o} \wedge\left(w^{\prime}, v\right) \in F_{i}^{u}
\end{array}
$$

Enforcing strict source-terminal paths

An optimal solution based on MIP: key insights

Congestion freedom

$$
\begin{aligned}
& \sum_{\left(s_{i}, v\right)} f_{\left(s_{i}, v\right), i}^{r}=1+\Lambda_{s_{i}, i}^{r} \quad s_{i} \in P_{i} \\
& \sum_{\left(v, t_{i}\right)} f_{\left(v, t_{i}\right), i}^{r}=1+\mathrm{Y}_{t_{i}, i}^{r} \quad t_{i} \in P_{i} \\
& \sum_{(v, w)} f_{(v, w), i}^{r}-\sum_{\left(w^{\prime}, v\right)} f_{\left(w^{\prime}, v\right), i}^{r}=\Lambda_{v, i}^{r}-\Upsilon_{v, i}^{r} \\
& \forall v \in v \in V\left(F_{i}^{o} \cup F_{i}^{u}\right) \backslash\left\{s_{i}, t_{i}\right\} \\
& (v, w),\left(w^{\prime}, v\right) \in F_{i}^{o} \cup F_{i}^{u} \\
& \sum_{i \in[\mid U]]} f_{(v, w), i}^{r} \cdot d_{i} \leq \alpha \cdot c_{(v, w)}+\beta \quad \forall(v, w) \in E
\end{aligned}
$$

Limiting flows

Fast algorithms: Greedy

$>$ Goal: optimizing the number of rounds

Fast algorithms: Greedy

$>$ Goal: optimizing the number of rounds
> Method: backward recursions from terminal

Fast algorithms: Greedy

$>$ Goal: optimizing the number of rounds
> Method: backward recursions from terminal

Proof of termination: by induction

Fast algorithms: Delay

> Goal: optimizing congestion

Fast algorithms: Delay

> Goal: optimizing congestion
> Method: searching for best delayed path

Fast algorithms: Delay
> Goal: optimizing congestion
> Method: searching for best delayed path
$>$ Proof of termination: stops when no changes happen in augmentation

Empirical counter-part of the tradeoff

The Internet Topology Zoo

MIP vs. Greedy vs. Delay

Summary

> Concept: introducing augmentation for consistent updates
> Theory:
$>$ any schedule is consistent with $* 2$ augmentation,
$>$ finding a consistent schedule with $* 2-\epsilon$ augmentation is NP-hard
> Algorithms:
> a mixed integer program to find the optimal number of
rounds/augmentation
> fast algorithms minimizing the number of rounds/augmentation
> Empirical evaluation: confirming our theories
> Future work: Supporting splittable flows or way-pointing

Thank you!

European Research Counci
stablished by the European Commissi

FШF
 Der Wissenschaftsfonds.

 für Bildung und Forschung

